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Abstract

Existing approaches for color-concept association typically rely on
query-based image referencing, and color extraction from image
references. However, these approaches are effective only for com-
mon concepts, and are vulnerable to unstable image referencing
and varying image conditions. Our formative study with design-
ers underscores the need for primary-accent color compositions
and context-dependent colors (e.g., ‘clear’ vs.‘polluted’ sky) in de-
sign. In response, we introduce a generative approach for mining
semantically resonant colors leveraging images generated by text-
to-image models. Our insight is that contemporary text-to-image
models can resemble visual patterns from large-scale real-world
data. The framework comprises three stages: concept instancing
produces generative samples using diffusion models, text-guided
image segmentation identifies concept-relevant regions within the
image, and color association extracts primary accompanied by ac-
cent colors. Quantitative comparisons with expert designs validate
our approach’s effectiveness, and we demonstrate the applicability
through cases in various design scenarios and a gallery.
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1 Introduction

Color is a fundamental element in visual design, serving as a power-
ful approach to convey meaning and represent specific concepts [9,
23]. Many colors have well-established associations with particu-
lar semantics, enabling designers to enhance visual communica-
tion [77]. These associations are valuable in domains such as data
visualization [20, 35, 67] and graphic design [18, 23, 69], where
color associations are essential to represent categories or themes.
For instance, as illustrated in Figure 1 (A), a set of tourist pins for
different cities can use colors linked to landmarks, such as red for
the Golden Gate Bridge or sandy yellow for the Pyramids. Similarly,
in data visualization, these concept-associated colors help catego-
rize information effectively, enhancing clarity and engagement.
However, selecting the satisfied color can be laborious, especially
when designers are dealing with unfamiliar concepts or striving to
align colors with specific emotions or contextual conditions. For
instance, when selecting colors for a group of historical landmarks,
designers might generally infer the desired tone for the “Statue of
Liberty” based on common sense (e.g., green or blue for the widely
recognized appearance). Careful selection is crucial to ensure that
the chosen colors not only reflect the intended concept (such as the
“Statue of Liberty”) but also evoke the desired context of emotions
(e.g., “bringing light and hope”). The process remains challenging,
particularly for novice designers.

This motivated the development of various methods to facilitate
color-concept associations by providing external evidence and ref-
erences to support designers’ color design decisions [9, 18]. Crowd-
sourcing efforts [44] leverage collective intelligence to determine
color associations; however, these methods can be time-consuming
and resource-intensive. In response, computational approaches
quantifying color-concept associations have emerged. These meth-
ods typically involve either mining color concept co-occurrences
from large text corpora or identifying colors from image references
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Figure 1: Design scenarios where appropriate color-concept associations are effective to enhance visual communication: (A)
graphic design and data visualization. These scenarios require color-concept association, which is preferable in generated
images. When comparing the queried and generated images for the “Statue of Liberty”, (B) colors extracted from the queried
images (both photos and clipart) show significant variations, whereas (C) the generated images provide a more consistent color

representation.

retrieved from image databases [20, 35, 57, 67]. Notably, this ap-
proach mirrors conventional practices used by designers who often
search for color-referencing images from online resources.

However, these methods encounter significant limitations from
various perspectives. First, the linguistic methods in the initial stage
are limited to common concepts and may find it challenging to cap-
ture context-dependent associations, as N-gram may be sparse for
less frequent concepts [57]. For instance, while the concept of the
“Statue of Liberty” is popular, the specific phrase “Statue of Liberty
with the feeling of light and hope” could be rare. Secondly, obtain-
ing representative images with consistent color distributions from
image databases for a given concept can be challenging. Queried
images can display significant visual discrepancies due to various
external factors such as lighting conditions, image quality, and
stylistic variations. For instance, photos of the statue retrieved from
Google Image Search exhibit notable differences, as illustrated in
Figure 1. Some studies [35, 67] attempt to refine the query results by
incorporating terms like “clipart”, yet the outcomes still show con-
siderable variations. These complex color disparities in the queried
results make it challenging to determine the most representative
color for the “Statue of Liberty”. A flexible and robust computational
approach is needed for mining color-concept associations.

We present a novel framework, GenColor, which utilizes a gen-
erative approach to extract semantically meaningful colors from
images produced by text-to-image (T2I) models. By providing de-
signers with a flexible and supportive framework, GenColor en-
ables them to explore color concepts and select contextually ap-
propriate color palettes, serving as a reference for their design
decisions. Our work is motivated by the insight that contempo-
rary T2I models are trained on large-scale real-world data, and the
generated high-quality images can resemble visual patterns in the
real world [8, 33, 50]. As such, T2I models can serve as a data min-
ing tool to uncover real-world visual patterns [72]. The design of
GenColor is informed by design goals from a preliminary study on
designers’ workflows and their expectations for a supportive tool
for color-concept association (Sect. 3). The GenColor framework
is implemented in three stages: 1) Conceptual Instancing (Sect. 4.1)
flexibly generates representative image samples of the correspond-
ing context-dependent concept through the stable diffusion model,

2) Text-guided Image Segmentation (Sect. 4.2) identifies semantic-
related regions within the image, and 3) Color Association (Sect. 4.3)
extracts primary-accent color compositions.

To evaluate the effectiveness of GenColor, we collect a designer
baseline dataset for concept coloring of 36 common concepts (Sect. 5.1),
and conduct a quantitative comparison with existing query-based
approaches (Sect. 5.2). The results show that GenColor produces
color compositions that closely align with the designers’ choices
and outperform query-based approaches in terms of representa-
tiveness and designer preference. This indicates that the generative
framework offers two primary advantages over retrieval-based ap-
proaches: 1) feasibility and flexibility in generating representative
images for context-dependent concepts; and 2) robustness and effec-
tiveness in managing variations in the generated images, such as
controlling lighting conditions and style. We also demonstrate the
application scenario of the GenColor in tasks such as identifying
colors for given concepts and utilizing the identified colors to color
clipart, highlighting its potential to support designers in real-world
scenarios (Sect. 5.3). A gallery of color-concept associations has
been developed and will be made publicly available to facilitate
research in this direction (Sect. 5.4).

In summary, our work makes the following contributions:

e We identify and distill design considerations of associat-
ing color with concepts, emphasizing the need for context-
dependent concepts and primary-accent color composition.

e We propose GenColor, a novel framework that leverages gen-
erative models for obtaining representative image samples
and enabling robust post-process for handling image varia-
tion.

e We collect a coloring dataset from professional designers, and
the effectiveness of the GenColor is evaluated through quan-
titative comparison with existing query-based approaches,
showing the potential of the GenColor in supporting design-
ers in real-world design tasks.

2 Related Work
2.1 Color in Visual Design

Color is a fundamental element in visual design, with applications
in various domains, including graphic design [27, 56, 69], visualiza-
tion design [67, 70], and interior design [19, 34]. Effectively using
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colors is essential for conveying information, evoking emotions,
and enhancing appeal. Various previous literatures have focused on
color perception, including contrast [63], harmony [34, 68], and psy-
chological impacts [30, 52]. Adobe has integrated these perception
guidances into their Spectrum color system to enhance usability
and accessibility [1]. Besides, color semantics, which refers to the
way people associate colors with specific concepts, plays a crucial
role in enhancing communication beyond effectiveness and aes-
thetics [35, 67, 70], such as “red” with “apples” or “blue” with the
“sky”. Thoughtful application of color semantics can enhance the
conveyance of meaning and emotion, enhancing communication
beyond mere aesthetics. For example, using semantic-resonant col-
ors can improve cognitive performance in interpreting information
visualization, allowing users to understand data categories with-
out constantly referencing a color legend [35]. Moreover, these
colors can convey abstract concepts like style or theme, aiding in
the communication of the overall ambiance of a design. As such,
color semantic mapping is a prevalent strategy in various design
disciplines like industrial design [29, 32] and dashboard design [70].

Conventional approaches to associating color semantics rely
on designers’ expertise and personal experience, which may be
influenced by cultural background, personal preferences, and past
experiences [31]. However, clients may have different preferences
for color-concept associations compared to designers [47]. Thereisa
growing need to provide designers with references on color-concept
associations [18]. To address this gap, computational approaches
for mapping color-concept associations have emerged, including
crowdsourcing efforts like the XKCD color survey [44] and data
mining from large image or language databases [67]. In this study,
we introduce a novel approach that leverages generative models,
instead of searching for references, to investigate color-concept
associations. Drawing inspiration from generative models trained
on extensive real-world image datasets, our approach can capture
various color concepts, align well with designer perceptions, and
offer designers reference colors for diverse concepts.

2.2 Computational Approaches for
Color-Concept Association

Associating colors with concepts traditionally relies on human
ratings, where participants are tasked with selecting colors that
best match given concepts [52, 79], providing names for given col-
ors [44], or assessing the strength of these associations [24, 65, 74].
While effective, these methods are time-consuming, labor-intensive,
and limited in scope, covering only a small number of concepts and
colors. To address these limitations, researchers have developed
automated methods that extract color-concept associations through
statistical analysis of language and image databases. Among them,
linguistic-based approaches use the frequency of basic color terms
(e.g., “red” and “blue”) in language as indicators of color-concept
associations [67]. These linguistic methods are often combined with
image-based approaches to provide more comprehensive color in-
formation [35, 36]. For example, Setlur and Maureen [67] developed
a two-stage framework that leverages N-gram [40] and Google Im-
age Search to map a word or phrase to a color. The method pairs a
given term with each of the eleven Berlin & Kay basic color terms [4]
and calculates their co-occurrences based on querying them in the
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Google N-gram corpus!. Once the highly related basic color terms
are identified (e.g., associating "red" and "green" to "apple"), a triple-
tuple such as ("apple", "red", "clipart") is submitted to Google Image
Search API to retrieve images and extract the dominant colors from
these reference images.

However, these language or image database-based approaches
face significant challenges. Language databases, such as Google N-
gram, fall short in covering the combinations of context-dependent
concepts and color terms, thus compromising the accurate justi-
fication of their association. For example, “quiet forest” and “pol-
luted sky” are common descriptions, while their combinations with
basic color items are inaccessible in the N-gram corpus. As the
complexity of concept descriptions increases, the limitations of
N-gram-based approaches become more pronounced [10, 57]. On
the other hand, the search-based reference images are unstable and
involve varying image conditions, making further color extraction
challenging [20]. For example, the searched images may contain
co-occurring concepts irrelevant to the target concept, leading to
misleading color-concept association. To mitigate the issues, exist-
ing work limits the search corpus to simple clipart [35, 67] or only
derives color histogram rather than dominant colors [20]. How-
ever, these constraints inherently limit the application scope. In
this work, we introduce a generative approach to color-concept
association. We leverage the powerful generative capabilities and
controllability of diffusion models to flexibly synthesize contexts
and concepts, and control image conditions (e.g., fidelity and illumi-
nation), thereby overcoming the limitations of traditional language
and image database methods.

2.3 Generative Models as Tools for Data Mining

Generative diffusion models have demonstrated powerful capa-
bilities in producing high-fidelity images from prompts [59, 61].
Research has further enhanced their applicability in scenarios like
controllable generation [81], image editing [5, 25] and inpaint-
ing [39]. Building on these advancements, the HCI community
has explored use cases that utilize generative models for human-AI
co-creation [14, 75], such as typographical design [80] and product
personalization [71]. In contrast to previous works focusing on
creative design, our work employs generative models as a data
mining tool to uncover real-world visual patterns, beyond
mere image synthesis. Our motivation stems from the ability
of generative models to capture complex patterns and variations
in the training data, thus generating new, realistic samples that
reflect the characteristics of the original data. Recent studies have
employed pretrained diffusion models to generate synthetic data
for training models, thereby improving their performance on clas-
sical computer vision tasks such as image classification [2, 64] and
image segmentation [48]. For example, Sariyildiz et al. [64] leverage
Stable Diffusion [59] to generate synthetic ImageNet [13] clones,
i.e, datasets with synthetic images for the ImageNet classes, using
class names as prompts. Close to our work, researchers have trained
generative models (e.g., generative adversarial networks [16]) on
faces [7] and cars [11] image datasets to analyze the evolution of
their characteristics over history.

!https://books.google.com/ngrams/
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Leveraging diffusion models to generate data for training and
analysis in vision-centric tasks represents a novel paradigm. The ap-
proach can reduce manual labor and mitigate potential data collec-
tion issues, such as poor image quality and mislabeled data [43]. To
efficiently explore visual patterns of specific interest from the large
visual representation space of pre-trained models, fine-tuning [60]
and prompt engineering [17] are often required to achieve precise
control over the generated content. For example, Siglidis et al. [72]
introduced an approach that fine-tunes diffusion models on specific
datasets to facilitate the generation of image samples that align
closely with their labels. However, fine-tuning is more appropriate
for closed-set concepts (e.g., classification tasks with finite concept
labels), while our target is open-set color-concept associations. To
achieve a precise analysis of the intended visual concepts, we intro-
duce a robust post-processing pipeline along with prompt tuning
that achieves flexible control. Specifically, we integrate open-set
detection [37] and promptable segmentation [28] to precisely seg-
ment concept-relevant regions within the image and then conduct
color association extraction for primary and accent colors.

3 Formative Study
3.1 Study Design

To gain insights into how professional designers apply color-concept
associations, we conducted semi-structured interviews with four
experienced designers, each lasting around 45 minutes. The partici-
pants brought diverse experiences: E1 had over 10 years of expe-
rience in visual design, E2 had 6-10 years, and E3 and E4 had 3-5
years of experience. Their expertise spanned graphic design, Ul de-
sign, game art design, and product design, offering valuable insights
into the role of color in different design contexts. Two participants
had formal academic backgrounds in design-related fields, while
the others combined academic knowledge with industry practice,
offering a well-rounded perspective on how theoretical concepts
are applied in professional settings.

During the interviews, we explored the following topics: (1) the
workflows designers use when selecting colors for specific concepts,
(2) the guiding principles and considerations for semantic color
associations and (3) designers’ expectations for a supportive tool
that integrates color-concept associations into their processes. All
interviews were recorded and transcribed to facilitate a detailed
analysis process.

3.2 Designer Feedback

In line with previous research, associating colors with specific
concepts to convey meaning is a common practice in visual de-
sign [21, 51, 53]. Here, we use the example of color-concept as-
sociation in clipart design, where the task is to design a clipart
of “mountain”, as illustrated in Figure 2. Given different contexts
(“pristine” vs. “polluted”), the anticipated designs and corresponding
colors are different. In the following, we use this example and sum-
marize the designers’ feedback into key considerations in design
practice and workflow.

3.2.1 Considerations in Design Practice. In color-concept associ-
ation for visual design, the concept is context-dependent, and the
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choice of color typically involves a composition of both primary
and accent colors.

o Context-dependent concept. Designers often associate colors
with various meanings [9], such as emotions, styles, cultures,
or specific items. We refine this broad notion of “meaning”
into two distinct components: concept and context. The con-
cept refers to a concrete design element, such as a mountain,
tree, or car, while the context reflects the abstract emotional
tone or condition to be conveyed [18, 23]. For example, in
a clipart designed to raise awareness about environmental
pollution, the “mountain” serves as the concept, while its
“clean” or “polluted” state represents the context, conveying
a sense of environmental purity or degradation, as shown in
Figure 2. Bright greens can evoke an uplifting atmosphere
of a pristine mountain, while grayish greens can depict the
degradation of a polluted mountain. This context-dependent
color choice adjusts the design’s mood without altering the
core concept. Proper colors align messages with both con-
cept and context. A mismatch in color-concept association,
such as using bright green for a polluted mountain, could
confuse viewers and weaken the intended message.

e Primary-accent color composition. Color composition rules
are considered a fundamental principle in visual design.
When associating with concepts, the primary color is closely
associated with the concept and the context being depicted.
It typically occupies the largest area in the design, ensuring
that the concept remains central and easily recognizable.
Accent colors complement the primary color to create a bal-
anced and meaningful visual representation. They provide
decorative or contextual elements to support the overall de-
sign. In the example, the primary color is bright green for
“pristine mountain” and grayish green for “polluted moun-
tain”. The accent colors, such as darker and lighter shades
of green, are used to suggest distance, depth, and shading.

Concept and Context-Dependent Color Selection. All partic-
ipants emphasized that the concept is the primary consideration
when selecting colors to convey specific meanings. There are some
common color-concept associations used in design, such as blue for
the sky, green for mountains, and brown for soil. Besides, they also
pointed out that color selection is influenced by factors beyond the
concept itself. These factors can be considered as contexts, such as
feelings, styles, and target audiences. While all participants men-
tioned feelings, they acknowledged that feelings can be vague. For
instance, E1 described designing a poster about lime, explaining that
instead of using the saturated green of the lime peel, they would
opt for a fresher green to convey a “refreshing taste.” E1 elaborated,
“If I look at the context, I would definitely consider its sour feeling, and
I think it must be related to the green and yellow color.” E3 also high-
lighted that sometimes the customer’s requirements are vague, such
as “changing the color to be more active.” Regarding style, E2 pointed
out that color usage differs between flat and realistic designs, with
flat designs typically using more saturated colors. Additionally, par-
ticipants may consider the audience of their designs. For instance,
E3 noted that designs aimed at children tend to use brighter, more
vivid colors, while business designs employ more subdued tones to
convey professionalism. There is a need for a flexible approach that
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Figure 2: Usage scenario for designing a clipart to raise awareness about mountain pollution. (a) Illustration of the design
elements, including the concept (“mountain”) and the context (“pristine” vs.“pollution”). (b) Examples of clipart design: the
clipart for “pristine mountain” uses bright green, whilst the one for “polluted mountain” uses grayish green. (c) Primary-accent
color composition is used by designers, with the primary color representing the concept and the context, while accent colors

provide depth and decoration.

can adapt to these contextual factors, providing designers with a
more nuanced and tailored color recommendation.

Intuitive Representation for Color Composition. Designers
consistently expressed the need for a well-defined color composi-
tion, with a highlight on the primary color and some accent colors.
E2 gave an example of food packaging for different flavors, ex-
plaining, “The color should be representative of the flavor, such as
tomato-flavored potato chips are always red. So when buyers see it,
they can quickly know what flavor it is.” E4 also preferred starting
with a primary color tied to the concept, complemented by other
colors working together in the composition. Participants were crit-
ical of existing color representations of possibility distributions,
with E1 describing them as “not intuitive” and “too many colors
unrelated to the concept.” A palette containing around five colors,
as E1 mentioned, was deemed sufficient, similar to those provided
by design tools. While the current color palette is insufficient, as
usually treated equally with all colors. They mentioned it would
be helpful to make the primary color salient, in the center, with
accent colors surrounding it, to provide a clear visual hierarchy.
Besides, they also suggested that the color ratio should be provided,
even if not strictly followed, to give designers a sense of the relative
importance of each color, which aligns with previous research [69].

3.2.2  Design Workflow. The practice of color-concept association
can generally be categorized into conventional and computational
approaches.

e Conventional approach. Conventionally, designers begin by
gathering references to identify color associations with spe-
cific concepts. They search for relevant images, photography,
or game scenes that effectively convey the intended concept,
using image searching engines like Google Images? or Pin-
terest>. Many designers habitually collect references, often
maintaining large and high-quality personal libraries for
inspiration. From these image references, designers draw
inspiration for primary colors and iteratively identify accent

Zhttps://images.google.com/
3https://www.pinterest.com/

colors. Various tools, such as eyedroppers for color extrac-
tion and color wheels for modifying color compositions, are
utilized to aid this process.

o Computational approach. Recent advancements in linguistic
analysis and image processing have boosted the development
of computational approaches for color-concept association.
This approach typically involves several steps: identifying
relevant concepts in text corpora (e.g., Google Ngrams*), find-
ing reference images from an image dataset, and extracting
colors from those reference images. These processes can all
be automated to a large extent, leveraging machine learning
techniques. The CIELAB color space [12] is often used in the
color extraction process due to its computational simplicity
and relatively perceptually uniform properties.

Universal and Objective Color References. In the conventional
approach, we found that the process of associating colors with
concepts is varies among designers. Each step relies heavily on
intuition and is influenced by personal preferences. While general
principles such as color composition rules (E3) and color psychol-
ogy (E1 and E4) provide guidelines, the final color choice remains
subjective. Personal experience and painting styles also play a role.
For instance, E4 prefers Morandi colors with lower saturation, while
E1 favors brighter colors. This variability extends to how designers
approach different concepts, depending on their familiarity and
personal feelings. E3 mentioned that what design school actually
teaches is aesthetics, which is “when you see something good, rec-
ognize the feeling, and know how to recreate it”. While courses may
teach step-by-step techniques, effective design work also benefits
from objective references that help designers understand the pub-
lic’s perception. As E3 explained, “Sometimes they (designers) focus
only on what they want to express, but what others perceive may be
different from their intent, and the result is not what their customer
wants.” Participants believe there is a need for an objective refer-
ence to provide a useful benchmark, even if it isn’t directly used in
the final design. Such a reference, aligned with public perception,
would help guide designers toward more universally understood
choices, mentioned by E3 as “move closer to objective data.” This
could also benefit novice designers, as E1 noted, who may not yet

“https://books.google.com/ngrams/
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Figure 3: Overview of the GenColor framework. The framework includes three stages: Concept Instancing for generating
representative image samples, Text-guided Image Segmentation for identifying relevant regions, and Color Association for

extracting the primary-accent color composition.

be familiar with or sensitive to certain design concepts and need a
starting point for color selection.

Flexible and Robust Image-Based Computational Methods.
The computational approach can be limited by the number and
quality of images available in the dataset. While designers perceive
computational methods as more objective than conventional ap-
proaches, the results are often unsatisfactory due to the limitations
of image referencing. E2 mentioned that the retrieved images are
not always relevant or fail to capture the desired atmosphere. This
limitation is attributed to the search engine’s algorithm’s inability
to consider context. For example, while there may be numerous
image references for a generic concept like “mountain”, there are
often fewer relevant references for a more specific concept like
“polluted mountain”. Moreover, the search results may not use color
to reflect the context of “polluted”; they might simply add visual
elements like garbage without modifying the color to convey degra-
dation. Such retrieved image results are not helpful for finding color
references that align with the intended concept and context. Addi-
tionally, the retrieved images are often of low quality, with cluttered
backgrounds or inconsistent lighting, further complicating the task
of identifying suitable color references.

3.3 Design Goals

Facing the gap between designer requirements and existing ap-
proaches, we aim to address these issues by leveraging generative
models for color-concept association. Our work is inspired by con-
temporary T2I models, which can resemble visual patterns from
large-scale real-world data. Based on insights from the formative
study, we identified the following design goals:

(1) Provide Justified and Objective Color References. The
framework should be both justifiable and transparent, of-
fering a clear rationale for each suggested color, ensuring
designers feel confident about the result. To align with de-
signers’ practice of extracting colors from image references,
the framework shall compute colors from image references,
rather than directly give a coloring result. Additionally, these
color references should be derived from large-scale datasets,
helping to minimize personal biases and providing objective
guidance in the color selection process.

(2) Maximize Feasibility and Flexibility in Concepts and
Context. The framework should accommodate a wide range

of concepts and contexts encountered in design. It must
dynamically adapt to various conceptual entities and contex-
tual factors, such as emotional tone, artistic style, and target
audience. The generative approach should flexibly adjust to
these variations, ensuring the generated colors align with
the core concept while capturing subtle contextual nuances,
offering a tailored response to each unique design scenario.
Facilitate Robustness and Effectiveness in Associating
Primary-accent Color. The framework should establish
robust color-concept associations by providing a primary-
accent color composition that reflects the concept and con-
text. It should identify semantically related regions in ref-
erence images and minimize noise during the process. The
color composition should consist of a primary color that
closely reflects the concept, with accent colors providing ad-
ditional depth and variety while still maintaining relevance
to the overall design.

—
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=

4 Generative Approach for Color-Concept
Association

This section presents GenColor, an innovative framework that au-
tomatically associates a given concept with primary-accent color
composition mined from images by generative models. As depicted
in Figure 3, the framework comprises three stages: (1) Conceptual
Instancing to generate representative images samples (Sect. 4.1), (2)
Text-guided Image Segmentation to identify conceptural-relevant
image regions for color analysis (Sect. 4.2), and (3) Color Associa-
tion to extract primary-accent color compositions (Sect. 4.3). Such
a framework mirrors the professional design process of sourcing
references and selecting visually appealing concept colors, as dis-
cussed in Design Practice (Sect. 3.2.2).

4.1 Conceptual Instancing

The initial stage of our framework is dedicated to leveraging dif-
fusion models, specifically Stable Diffusion 3, to generate images
that accurately represent a given concept. Given the critical role
of prompts and hyperparameters in the image generation process
and the potential risk of producing duplicate images, this stage
involves two primary steps: a universal prompt refining strategy
and a generation strategy varying the hyperparameters, ensuring



GenColor: Generative Color-Concept Association in Visual Design

Enhanced Prompt

A vibrant apple exuding a sense

CHI 25, April 26-May 1, 2025, Yokohama, Japan

g

Random
Seed

-

of juiciness and freshness,
, realistic photo
Quality

Negative prompt: cropped, out of
frame, worst quality, blurry,
cartoon, unreal, artwork

CGF:2

e
» & A yA 4

i o 0 9 e

CGF:3 GF:4 CGF:5 CGF:6 CGF:7

(small, low quality)

Guidance Scale (large, unnatural)

Figure 4: Prompt design and parameter setting in the Conceptual Instancing stage. The prompt is refined based on the core
principles of concept, context, style, lighting, and quality control. The guidance scale and seed are adjusted to control image

quality and diversity.

the diffusion model to generate images that reflect real-world color-
concept associations.

4.1.1  Enhancing the Concept Prompt. Prompt design is critical
for the quality and relevance of generated images, as highlighted
in previous works [38, 54]. An effective prompt should strike a
balance between specificity and flexibility, ensuring accurate visual
interpretation while avoiding unnecessary artifacts or distortions.
To ensure realistic and consistent color reproduction, we must
avoid introducing unnecessary color variance that diverges from
the intended concepts and contexts. At the same time, developing a
flexible prompt template enables more effective control over image
conditions, allowing for the seamless synthesis of concepts across
various contexts, as shown in Figure 4 (left).

Specifically, we focus on the following core principles when
refining our prompts:

e Concept: Clearly define the core concept to be visually repre-
sented. Not introducing extra elements or irrelevant objects
ensures that the generated images are focused and accurate.

e Context: Context refers to the conditional or emotional
state of a concept. For example, “ripe banana” versus “unripe
banana’, or “sunny sky” versus “stormy sky”. By providing
context, we guide the model to generate images that accu-
rately capture the intended mood or setting. It is important
to avoid descriptions that directly reference specific color
tones, as this could introduce bias into the model.

o Style: Style should be defined based on the intended use of
the image. We differentiate between two common categories:
“realistic photos” and “clipart.” However, terms like “clipart”
can be misleading to the model, as Stable Diffusion may mis-
interpret it. To ensure clarity, we recommend using phrases
like "colored flat design" for simpler illustrative styles and
"realistic photo" for high-detail, lifelike outputs. By setting
clear stylistic expectations, we can mitigate unwanted style
mismatches, such as cartoonish or 3D elements when realism
or flatness is intended.

e Lighting: Lighting should be carefully controlled to main-
tain realism and color consistency across images. Natural
lighting is generally recommended avoiding distortions from
artificial light sources, which can introduce color shifts or
unnatural shading [78].

¢ Quality Control: Ensuring the generation of high-quality
images involves a combination of carefully chosen param-
eters and the use of negative prompts. Negative prompts
allow us to exclude unwanted characteristics—such as overly
cropped images or incorrect styles [3]. For example, when
generating realistic photos, we would specify in the negative
prompt to avoid cartoon or 3D styles, while for flat design,
we would exclude realistic 3D rendering styles. This targeted
exclusion helps ensure that the generated objects are fully
within the frame and match the intended quality.

4.1.2 Image Generation with Stable Diffusion. After refining the
concept prompts, we proceed to the image generation phase using
the Stable Diffusion 3 model [59]. This model is selected for its
ability to produce detailed and visually appealing images that align
well with specified prompts, effectively reflecting real-world color
associations. To introduce variability and creativity in the generated
samples, we adjust certain parameters within the model:

e Guidance Scale: This parameter manages the balance be-
tween strict adherence to the prompt and creative explo-
ration. Randomizing the guidance scale within an appro-
priate range helps generate diverse images. Extremely low
values can lead to distortions or incomplete images, while
high values can result in unnatural contrasts (see Figure 4
(right)). Based on Stable Diffusion recommendations and our
empirical adjustments, we set the value to vary randomly
between 3 and 6.

e Seed: Randomizing the seed parameter ensures that each
image generation is unique, even when the prompt remains
consistent. This randomness is crucial for producing diverse
images and avoiding repetitive outputs.

We generate a set of 50 images for each concept, each with a
resolution of 1024 x 1024 pixels. The quantity of images is chosen
following previous literature on obtaining color-concept association
[20, 57] to provide a diverse and comprehensive representation of
the concept. This resolution is chosen to provide a high level
of detail, which is essential for comprehensive color analysis in
subsequent stages. Additionally, generating images at a higher
resolution increases the likelihood that the model will place the
object in the center of the image, resulting in more consistent and
varied compositions. By carefully adjusting these parameters, we
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Figure 5: The text-guided image segmentation process. (a) The pipeline utilizes G-DINO for prompt-guided detection and SAM
for concept-based segmentation. (b) Comparison of traditional background removal and text-guided segmentation.

ensure that the generated images adhere to the specified concepts
and exhibit a wide range of variations, enhancing the overall quality
and diversity of the image set.

4.2 Text-guided Image Segmentation

After obtaining representative images of a specified concept, ac-
curately identifying the concept-related regions is crucial for fur-
ther precise color information extraction. Previous query-based
approaches consider unstable search results and varying image
conditions, thus restricting the image type to clipart [35, 67] or us-
ing background removal techniques to obtain image segments [20].
However, traditional background removal has several drawbacks.
One major limitation is the insensitivity to specified concepts. Back-
ground removal techniques may retain irrelevant co-occurring el-
ements, leading to misleading color-concept associations. For ex-
ample, in the “blueberry” case, background removal will still retain
unrelated elements (the bowl contains the blueberry), making sub-
sequent color extraction difficult, as shown in Figure 5 (b). Another
issue is that common concepts, such as "sea" and "sky," often appear
as part of the image background. Background removal techniques
might eliminate these elements, which are common in visual de-
sign. For example, Figure 5 (b) presents a case of "sky," where the
background removal technique retains the foreground clouds while
removing the "sky" we are interested in. To address the issues, we
employ a text-guided image segmentation approach that seamlessly
integrates with previous text-guided image generation, as depicted
in Figure 5. This integration enables the effective and efficient seg-
mentation of concept-relevant regions in the generated images,
thereby enhancing the accuracy of our analysis.

We aim to use specified concepts as text prompts to get the
corresponding image segment directly. However, in computer vi-
sion, determining the mask in an image that matches the region
described by text remains challenging. To effectively address this
open-set segmentation challenge [58], we employ an ensemble
approach, dividing it into two main components: open-set detec-
tion [37] and promptable segmentation [28]. Figure 5 (a) illustrates
the process, which begins with GroundingDINO [37], an open-set
object detector that uses textual input to generate bounding boxes
around regions of interest within the image. To refine these bound-
ing boxes, we apply Non-Maximum Suppression (NMS) to eliminate
overlapping regions, retaining only the most confident and relevant

detections. Subsequently, the annotated boxes obtained through
GroundingDINO serve as the box prompts for the Segment Any-
thing Model (SAM) [28], which generates precise mask annotations
for the identified regions. After segmentation, all segmented regions
are merged into a single mask, representing the concept-relevant
areas within the image. By leveraging the capabilities of these two
robust expert models, we can more effectively accomplish open-set
detection and segmentation tasks, thereby improving the accuracy
of color-concept association analysis.

4.3 Color Association

The final stage of our framework focuses on extracting color in-
formation from the segmented regions of generated images and
deriving a primary-accent representative color composition for
given concepts. The objective is to identify the primary and accent
colors that best represent the concept, ensuring that the color com-
position is both accurate and meaningful for design applications.
Figure 6 illustrates the color association pipeline. Our pipeline be-
gins with color discretization, where the color values within the
segmented regions are mapped into a discretized 16 X 16 X 16 RGB
color space. This step reduces the complexity of the color data
by categorizing close color values into defined bins, simplifying
identifying the most frequent colors within each image. The color
corresponding to the bin with the highest count is then selected as
the dominant color at the image level, such as (@ @ [ in Figure 6.
Considering that a concept can be associated with multiple rea-
sonable colors across different images, it is essential to group colors
appropriately. Our approach aims to balance conciseness and di-
versity in color representation, thereby providing an effective color
abstraction. We merge similar colors, while still allowing diversity
at the color palette level. Specifically, displaying multiple reason-
able colors together should be avoided, as they may not typically
appear simultaneously in a design. For instance, an “apple” is repre-
sented by different dominant colors like red or green, but it would
be unusual to see both colors in one apple. To preserve diversity
within the same color category, we distinguish between different
shades of similar colors. Take “mountains”, for instance; they can
appear in deep green or deep blue-green tones. Although these
shades are somewhat similar, separating them into distinct groups
ensures a varied and comprehensive color palette and provides
diverse references for designers. Thus, we conduct image grouping
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Figure 6: The process of extracting color information from segmented regions of generated images to derive a primary-accent
color composition for a given concept. The framework includes color discretization, grouping similar colors into same groups,
and clustering to identify the primary and accent colors for the final color composition.

based on their dominant colors. To address this, we group images
by calculating CIEDE2000 color distances in the CIELAB space and
applying a threshold of 12. Such a threshold allows for noticeable
differences between colors, such as variations within the same color
category (e.g., different shades of red), while still considering them
part of the same color group. This ensures that similar colors are
clustered together while distinctly different colors remain separate.
After grouping, we sort the color groups by the number of images
they contain and select the top five most frequent color groups. To
ensure the robustness of the pipeline, we exclude any color groups
that contain fewer than three images. After grouping, we aggregate
the color bin values of each image in the same group.

Similar to image-level color extraction, we apply color discretiza-
tion to the aggregated color bins of each image group. The top
colors are considered the dominant color for the group. To deliver
the color composition of each image group, we separate their ag-
gregated color bins into two classes: top colors and other colors.
Specifically, using the CIEDE2000 color distance threshold < 7,
commonly recognized as the range distinguishable by the human
eye [73], we filter the colors surrounding the group-level dominant
color as the top colors. Colors not falling within this threshold are
categorized as other colors. Then, we set the centroid of top colors as
the primary color. For accent colors, we apply k-means clustering to
compute the typical colors for the concept across all images, where
we set k to 5 following previous color palette research [6]. This
grouping-then-clustering approach ensures the full exploration of
color-concept association and the delivery of the primary and ac-
cent colors to represent the concept, thus providing a coherent and
comprehensive color composition for design purposes.

For the final color composition, we design an intuitive visual rep-
resentation that combines the primary and accent colors. Inspired
by the traditional painting palette, we create a radial glyph, placing
the primary color in the center and the accent colors around it, as
shown in Figure 6. The central position of the primary color em-
phasizes its importance, allowing designers to quickly identify the

main color associated with the concept. Accent colors with greater
variance are positioned on the outer ring, helping designers explore
a broader range of complementary colors. The angular range of
each accent color represents its proportion within the color palette,
reflecting its frequency as determined by the clustering algorithm.
This visual representation provides a clear and intuitive way to
present the color composition of a concept, aiding designers in
selecting appropriate colors for their design tasks.

5 Evaluation and Application

This section presents a comprehensive evaluation of GenColor,

demonstrating that it generates more representative and user-preferred

colors compared to previous computational methods. To quantita-
tively assess the different methods in color space using color dis-
tances, we first gather a baseline dataset from designers (Sect. 5.1).
Then, we compare different approaches using color difference com-
parison (Sect. 5.2.2) and user ratings (Sect. 5.2.3). Furthermore,
we present various downstream application scenarios of GenColor
(Sect. 5.3). Finally, we construct a large-scale color gallery where
designers can explore and retrieve relevant color compositions by
performing text-based search (Sect. 5.4).

5.1 Designers’ Coloring Dataset

The lack of baseline data hinders the quantitative assessment of
different approaches in the color space. Here we aim to collect
a dataset that shows how professional designers associate colors
with various concepts and contexts, and then use this dataset as a
baseline for evaluating the effectiveness of our generative approach.

5.1.1 Scope of the Concepts and Contexts. We selected a diverse
range of concepts and contexts commonly used in design practice,
drawing from previous studies and designer interests. The selected
concepts fall into two main categories: Concept and Context, as
summarized in Table 1.
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Table 1: Examples of entities classified by type and subtype.

Type Subtype Entity
Fruit apple, banana, blueberry, cherry, grape, peach, tangerine
Vegetable carrot, celery, corn, eggplant, mushroom, olive, tomato

Basic Concept

Environment | mountains, sky, ocean, desert, grassland, forest, lake, glacier

Animal fox, tiger, lion, elephant, crocodile, flamingo, penguin, peacock
Conditional | polluted, clear, pure, at springtime, at sunset

Context
Emotional lively, quiet, peaceful, depressed, happy, sad, energetic

o Concept: We primarily focused on natural elements, as they
tend to exhibit more stable color associations compared to
artificial concepts, which can vary more widely (e.g., color of
plastic). Based on previous studies [42, 57, 67], we included
simple, standalone entities such as common fruits (e.g., apple,
banana) and vegetables (e.g., carrot, corn), with seven items
in each category. To broaden the scope, we also incorporated
more complex elements, including animals and environmen-
tal components, adding eight items per category. Examples
include animals like fox, tiger, and lion, and environmental
elements like mountains, sky, and ocean.

e Context: This category pairs concepts with different con-
texts that can influence their color associations. We con-
sidered both the conditional and emotional aspects of each
concept, selecting six items in this category. Examples in-
clude the sky in different states (e.g., polluted vs. clear) or
scenarios evoking different feelings (e.g., quiet vs. lively).

5.1.2  Participants and Procedure. We recruited 24 professional de-
signers from online design communities, representing a diverse
demographic in visual design. Participants ranged from 20 to 30
years old (M = 25.5, SD = 2.57), with 14 males and 10 females.
Professionally, 4 worked in industry, 11 held related degrees and
were employed in academia, and 8 had experience in both. Their
backgrounds spanned graphic design, UI design, interior design,
illustration, product design, and animation. In terms of expertise, 5
had 1-2 years of experience, 10 had 3-5 years, 7 had 6-10 years, and
1 had over 10 years. This study received approval from the univer-
sity’s ethics committee. The study began with obtaining informed
consent and collecting background information through a ques-
tionnaire. All participants were explicitly informed that their work
contributed to the development of a Generative Al tool, specifically
in the evaluation stage, and that their data would be used solely
for research purposes. They then received detailed instructions and
completed a tutorial session featuring three example concepts. After
confirming their understanding, they proceeded with the main task.
Participants were asked to complete a coloring task for 36 different
concepts, using the most representative colors they associated with
each concept. Designers were asked to color the drawings without
any reference, using around 1-5 representative colors of their choice.
They were encouraged to reflect the importance of each color by
adjusting the area it occupied in their design. To simplify the task,
we provided participants with a line drawing of each concept. The
line drawings were found online and verified by an expert designer

blueberry carrot fox elephant
| [ | ] ] L]
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glacier clear sea polluted sky quite forest

Figure 7: Examples of the dataset collected from professional
designers.

to ensure that the concepts were easily recognizable and unambigu-
ous. Designers were allowed to use any tools they were familiar
with, and no time limits were imposed on the task. Upon comple-
tion, designers confirmed that their chosen colors matched their
understanding of each concept. The study was conducted online,
taking approximately 1-2 hours, with participants compensated
around 15 USD.

5.1.3 Designers’ Coloring Dataset. We collected a total of 36 con-
cepts, each of which was colored by 24 designers, resulting in 864
color samples. The colorings are of high quality, with consistent
color choices across designers. Figure 7 illustrates examples of
the coloring results, and the corresponding extracted color com-
positions are shown above. The whole dataset is available in the
supplementary material, and will be released in the future.

5.2 Quantitative Evaluation

To evaluate the effectiveness of our approach, we conducted a quan-
titative evaluation comparing the color compositions generated by
our generative method with those query-based results.

5.2.1 Experiment settings. For the evaluation, we constructed a
dataset of color compositions for 36 distinct concepts aligned with
the designers’ coloring dataset. We included two types of image
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Figure 8: Our result compares with previous works on basic concepts. D stands for the designers’s ground truth, G stands for
the generated result by our method, Q stands for the query-based result, and QC stands for the query-based clipart result.

sources: photos and clipart. Previous studies suggest that, for cer-
tain concepts, human-made illustrations may better capture peo-
ple’s color associations [35]. For instance, the association between
“money” and the color green is more pronounced in clipart images
than in photos. It is important to determine when to use photos and
when to use clipart based on the specific concept. For each concept,
we applied the following conditions to obtain the image dataset
and process them with the pipeline in Sect. 4:

e Queried Image (Q): Image datasets were obtained by query-
ing the concept in Google Image Search. We use the top 50
images returned from the search engine, consistent with pre-
vious studies [20]. The search engine is expected to return
the most relevant images for the concept. Most of the images
are photos, but some clipart images may also be included.

o Generated Image (G): Realistic photo datasets generated
by our method are designed to reflect the natural color pat-
terns associated with photographic representations of the
concept. The prompt is set to generate “realistic photo” with
“natural light”. Contexts have been enhanced in prompt to
generate more context-dependent color, such as ‘“exuding a
sense of depression and heaviness” for “polluted”. Note that
the prompt is not directly related to the color, but the context
can influence the color association.

e Query-based Clipart (QC): Image dataset obtained by query-
ing the concept with the term “clipart” appended in Google
Image Search. Color compositions are generated by query-
ing the concept with the term “clipart” appended in Google
Image Search. This method filters the results to focus on
more simplified and symbolic representations, emphasizing
key colors typically used in clipart images.

e Generated Clipart (GC): Clipart datasets generated by our
method, based on simplified and stylized representations
that often use more distinct and exaggerated colors. This
dataset is generated with the prompt “simple flat design”.
The context is also enhanced in the prompt.

We observed that the T2I model responds more effectively to
visual contexts than to descriptions targeting other senses. For
instance, context like “clear” versus “polluted” are captured more
easily than “lively” versus “quiet.” This likely stems from the model’s
training on visual data, making it less sensitive to certain auditory

terms. To improve this, we enhanced prompts by using more de-
tailed descriptions related to atmosphere and emotions, such as
replacing “quiet” with “evoking feelings of silence and lonely.” Further
details are available in the Appendix.

5.2.2  Color Difference Comparison. To demonstrate the effective-
ness of our approach, we compared the color generated by our
method with those obtained from the query-based methods. First,
we visually examined the primary colors of each basic concept, as
shown in Figure 8. Then, we used CIEDE2000 color difference to
quantify the similarity between the primary colors extracted from
the generated images and the designers’ ground truth.

The results in Figure 8 show that the primary colors extracted
from our generated approach are generally consistent with those
produced by designers. While there are minor visual differences in
brightness and saturation, the color differences remain within an
acceptable range, and the obtained colors are reasonable. In contrast,
the query-based approach exhibits more variation, particularly in
environmental concepts.

These observations are further supported by the quantitative
color distance comparison in Figure 9. We grouped the compar-
isons based on the image source type—whether generated from
photos or clipart—since it’s not reasonable to directly compare
colors between photos and clipart. For basic concepts, our gener-
ated approach outperformed the query-based approach and aligned
more closely with the designers’ results. Specifically, the gener-
ated clipart (M = 15.18, SD = 14.90) had a smaller color distance
than the queried clipart (M = 19.97, SD = 18.92). For photos, the
generated image (M = 22.26, SD = 13.03) was also closer to the
ground truth compared to the general queried results (M = 24.19,
SD = 17.61).

When examining context-dependent concepts, the advantages
of the generative approach are even more pronounced, with the
small color distance and more stable results, as shown in Figure 9.
The generated clipart (M = 13.37, SD = 3.26) had a much smaller
and more stable color distance compared to the query-based clipart
(M = 27.08, SD = 18.56). Similarly, the generated image (M =
17.91, SD = 6.19) was closer to the ground truth compared to the
general queried results (M = 22.77, SD = 15.12). This advantage is
likely due to the query-based approach’s failure to properly link
colors with context. For instance, as shown in Figure 9 (right), when
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Figure 9: Color distance between different approaches and the designer’s ground truth. Left shows the color distance of our
generative approach and two query-based methods, across basic concepts and context-dependent concepts. Right shows the
dominant color of each context, with example generated and queried images.

querying for clipart of a polluted sky, the results often add visual
elements such as chimneys and smoke to convey pollution but make
little effort to modify the actual color of the sky. Similarly, in the
clipart of a polluted sea, garbage is added to the image, but the sea
remains blue. In contrast, the colors generated by our approach are
closely aligned with the context, effectively conveying the intended
atmospheric or environmental feel, such as the somber tone of a
polluted sky or the murky green of a polluted sea.

5.2.3 User Rating. We conducted a user study to evaluate the rep-
resentative and preference of the color-context association across
four different methods and four groups of concepts. The results are
shown in Figure 10.

Study Design. We recruited 30 participants (21 females, 9 males)
through posters and social media, with an average age of 27.07 years
(SD = 6.90). Among the participants, 12 participants have design
backgrounds, including graphic design, UI design, visual design,
etc. The remaining 18 participants came from various fields, such
as engineering, computer science, and psychology, with no pro-
fessional design experience. This participant pool provided a wide
range of perspectives for the evaluation. The experiment assessed
two primary factors: representativeness and preference, both rated
on a 7-point Likert scale. Representativeness was defined as the
extent to which the color composition was perceived to align with
the concept and context, while preference referred to participants’
subjective liking of the color composition, both are primarily influ-
enced by color harmony and visual appeal. Participants evaluated
color compositions generated by four different methods: Query (Q),
Generated Image (G), Query Clipart (QC), and Generated Clipart
(GC). A total of 36 concepts were tested across these four methods
and two metrics, resulting in 8640 trials (36 concepts X 4 methods
X 2 metrics X 30 participants). The order of the trials was fully
randomized, and participants were blinded to the method used to
generate each color composition. The test took approximately 20
minutes to complete, and participants were compensated approxi-
mately 3 USD for their time.

Results. We conducted a one-way ANOVA to compare the rat-
ings across the four methods and four groups of concepts, followed
by a post-hoc T-test to identify significant differences between these
methods.

For the representativeness evaluation, the generated clipart re-
ceived the highest rating (M = 4.71, SD = 1.46), while the generated
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Figure 10: User rating for the representative and preference of
the color-context association across four different methods
and four groups of concepts.

image (M = 4.55, SD = 1.47) had the lowest rating for basic con-
cepts. The differences between these ratings and those of the query
clipart (M = 4.68, SD = 1.41) and query (M = 4.61, SD = 1.37)
were minimal. In the environmental concepts group, the generated
image (M = 5.31, SD = 1.26) received the highest rating, signifi-
cantly higher than both the query (M = 4.90, SD = 1.27, p < .001)
and the query clipart (M = 5.02, SD = 1.41, p < .05). Additionally,
the generated clipart (M = 5.23, SD = 1.23) was rated significantly
higher than the query (p < .01). Similarly, in the context-dependent
concepts group, the generated image (M = 5.17, SD = 1.44) was
rated significantly higher than both the query (M = 4.63, SD = 1.41,
p < .001) and the generated clipart (M = 4.82, SD = 1.43, p < .05).
Although the query clipart (M = 4.89, SD = 1.50) received a higher
score than the generated clipart, the difference was not statistically
significant. These findings suggest that participants perceive the
generated images as more representative than other methods, par-
ticularly for natural environments and context-dependent concepts.
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Figure 11: Example of identifying the representative color of holiday and landmark.

In the preference evaluation, no significant differences were
found between the four approaches in the basic concepts group.
However, the query clipart approach (M = 4.62, SD = 1.41) received
the highest preference rating, followed closely by the generated
clipart (M = 4.60, SD = 1.47), query (M = 4.59, SD = 1.33), and
generated image (M = 4.50, SD = 1.41). For the environmental
concepts group, participants significantly preferred the generated
image (M = 5.30, SD = 1.27) over all other methods. This difference
was statistically significant when compared to the generated clipart
(M = 5.00,SD = 137, p < .05), query (M = 4.73, SD = 1.30,
p < .001), and query clipart (M = 4.94, SD = 1.42, p < .01). In
the context-dependent concepts group, the generated image again
received the highest preference rating (M = 4.97, SD = 1.42),
with significant differences observed compared to the query clipart
(M = 4.63, SD = 1.61, p < .05), generated clipart (M = 4.56,
SD = 1.51, p < .01), and query methods (M = 4.24,SD = 1.43,p <
.001). These findings suggest that participants prefer the generated
image for natural environments and context-dependent concepts.
The generated clipart received the second-highest rating in the
environmental concepts group, significantly outperforming the
query method (p < .05). In contrast, the query method was rated
lowest in the context-dependent concepts group, with statistically
significant differences compared to all other methods: generated
image (p < .001), generated clipart (p < .05), and query clipart
(p < .05). This indicates that participants tend to dislike the query
method the most for context-dependent concepts.

Overall, no significant differences were observed in representa-
tiveness or preference among the four methods for basic concepts.
However, for natural environments and context-dependent con-
cepts, the generated image outperformed the other methods in both
representativeness and user preference, while the query method
was rated as the least representative and least preferred.

5.3 Application Scenario

We demonstrate two application scenarios where our method can
support designers in color-concept association tasks: identifying
representative colors for design elements and clipart coloring.

5.3.1 Identifying Representative Colors for Design Elements. In sce-
narios such as designing posters for holiday promotions or city

branding campaigns, identifying the primary colors associated with
each design element is a critical first step. Our method offers an
efficient solution for designers to pinpoint representative colors
that align with the intended theme. Figure 11 illustrates examples
of identifying the representative colors for both holidays and land-
marks. For instance, considering key elements of Christmas, such
as the Christmas tree, the method recommends a color composi-
tion with green as the primary color, which is strongly associated
with the holiday. Similarly, when branding iconic landmarks like
the Taj Mahal or the Statue of Liberty, the method generates dis-
tinct color compositions that reflect each landmark’s unique visual
identity—beige and gold for the Pyramids or teal for the Statue
of Liberty. This ensures consistency and visual cohesion across a
series of promotional materials.

5.3.2  Clipart Coloring. In another scenario, designers tasked with
coloring illustrations for promotional graphics can benefit from the
color compositions generated by our method. These results serve
as a valuable reference, aligning closely with public perception and
providing guidance for accurate and effective coloring. Figure 12
illustrates how designers apply the recommended colors to various
conceptual entities and contexts. For basic design elements, such
as apples or penguins, the method offers intuitive and recognizable
color compositions that enhance the clarity and visual appeal of
the design. In more complex scenarios, the method adapts its color
recommendations based on environmental or temporal contexts.
For instance, a farm field during harvest is characterized by warm
browns and yellows, while the same field in spring might feature
fresh greens. Similarly, a desert scene at midday could be depicted
in harsh, hot, and bright tones, whereas a desert at sunset might be
represented with cooler, darker tones. This flexibility in adapting
to diverse contexts not only streamlines the design process but also
provides designers with a reliable starting point or reference for
their work. By offering context-dependent color recommendations,
our method helps designers create more engaging and visually
coherent designs that resonate with their intended audience.

5.4 Gallery of Color-Concept Association

To enhance research and practical design applications, we devel-
oped a gallery of color-concept associations, offering a diverse range
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Figure 12: Result of user coloring task, demonstrating how the recommended colors are applied to different conceptual entities

and contexts, such as seasonal or time variations.

of concepts and contexts (see Figure 13). This aligns with previ-
ous studies [26, 44], providing a visual representation showing the
outcome of studies on color-concept associations. Our gallery in-
cludes common design elements and extends to nuanced categories
such as different styles, emotions, and times of day. Designers can
perform text-based searches to easily explore and retrieve relevant
color compositions, enabling them to find colors that best suit their
specific design needs. This functionality provides designers with
an extensive and adaptable resource to support various creative
projects.
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Figure 13: Gallery of color-concept associations, showcasing
a wide range of concepts and contexts.

6 Discussion

6.1 Personalized Color-concept Association

Generative Al’s ability to produce universal color-concept associ-
ations that align closely with human judgments demonstrates its
reliability. It is valuable for designers to effectively convey intended
meanings and emotions to the general public, as well as to ensure
that their designs are universally understood. However, genera-
tive Al can be extended beyond universal associations to cater to
more personalized design solutions. Acting as an adaptive agent,
generative Al can simulate more nuanced audience perspectives
by factoring in personality traits, cultural contexts, and emotional
responses, which are essential for achieving personalized design
solutions [18]. This adaptability is particularly impactful when de-
signing for diverse audiences where a one-size-fits-all approach

to color selection is insufficient. We initially tested how different
audiences, such as elderly individuals, women, young adults, and
children, perceive colors in the contexts of farms and cityscapes, as
shown in Figure 14. The results reveal that color related to children
is bright and saturated, while for elderly audiences, it is darker and
muted. These findings highlight the capability of generative Al to
tailor color associations in ways that resonate more deeply with
specific user groups.
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Figure 14: Associated colors for farm and cityscape concepts
as perceived by different audience groups.

These findings highlight generative Al’s potential to transcend
traditional design practices, offering nuanced color associations
for personalized, context-sensitive designs that align with diverse
audiences’ needs.

6.2 Balancing Creativity and Consistency

The integration of generative Al into design workflows reveals a
critical tension between creativity and consistency. On the one hand,
AT’s capacity to generate consistent color-concept associations en-
sures designs are broadly accessible and effectively communicate
intended messages, aligning with general audience expectations.
This is particularly beneficial for conveying widely accepted mean-
ings or evoking predictable emotional responses, enhancing effi-
ciency in reaching diverse audiences. While consistency ensures
baseline communicability, controlled diversity at the palette level
allows creative exploration within defined boundaries. Design is not
solely about meeting audience expectations; it also involves inno-
vation and reflecting the designer’s unique perspective [46]. Thus,
it is essential that generative Al supports diverse color-concept
associations without hindering designers’ creativity.
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Figure 15: Exploring diverse color-concept associations using GenColor. (A) Prompt level: GenColor allows diverse input
exploration, allowing designers to specify varying attributes. (B) Palette level: GenColor provides a spectrum of palettes linked

to each concept, offering designers a broad range of options.

By introducing diversity at the prompt and color palette lev-
els, GenColor facilitates the exploration of diverse color-concept
associations. At the prompt level, we enhance creative flexibility
through a variety of context-aware concepts (e.g., vibrant and des-
olated), styles (e.g., photo, flat design, painting), and lighting (e.g.,
tones and intensity) options, as shown in Figure 15 (A). Different
prompts can influence image generation, capturing diverse design
intentions even with a fixed seed. We acknowledge that a concept
may be linked to multiple color palettes for color variation at the
palette level. As illustrated in Figure 15 (B), we provide a spectrum
of palettes associated with each concept, giving designers a wide
array of options. Concrete concepts like “fox” or “clear sky” may
show slight shade variations. In contrast, broader concepts like
“mountains” or “park in spring” lead to more diverse palettes fea-
turing a wider range of shades and tones. For instance, mountains
might include various greens and blues hues, while spring parks
could showcase pinks, greens, and yellows.

Moreover, generated color palettes are intended to support de-
signers’ decisions by serving as inspirational references, not as final
solutions. Importantly, designers should always retain the freedom
to select, modify, and refine these suggestions according to their
vision. Generative Al should be seen as offering a starting point
or reference rather than as a substitute for the designer’s voice.
In this collaborative process, the role of the designer is crucial in
refining and personalizing Al suggestions, ensuring that the final
design embodies both consistency and creativity. In this way, Al can
facilitate the efficient generation of typical color associations while
still allowing designers to express their unique creative identity.

6.3 Limitation and Future Work

Expand the Scope of Concepts. Our current framework primar-
ily addresses concrete concepts within specific contexts. However,
abstract concepts, such as “danger” or “freedom” are challenging to
represent visually and remain outside the scope of this study. To
improve, incorporating metaphorical or symbolic imagery could
better capture these abstract ideas. Additionally, our approach cur-
rently handles single concepts in isolation and does not address the

complexities of managing multiple concepts simultaneously. In the
formative study, E4 highlighted the difficulty of selecting colors for
multiple concepts while maintaining harmony and conveying the
intended context effectively. Future work could focus on methods to
support the composition of colors representing multiple concepts,
ensuring cohesive and harmonious design outcomes.

Enhance Contextual Adaptability. Our current testing has fo-
cused on conditional and emotional contexts. While our framework
is theoretically generalizable to more complex contexts—such as
audience preferences, cultural influences, or artistic styles—these
areas have not been sufficiently explored. Future work could inves-
tigate how generative Al can adapt to these richer contexts and
offer relevant color recommendations. An intriguing area for future
research is to explore which contexts are interpretable by gener-
ative AL Understanding this could provide valuable insights into
optimizing Al for diverse and nuanced design needs.

Biases and Limitations in T2I Model. Despite generating high-
quality images, T2I models exhibit North-centric biases, where Al
systems are disproportionately influenced by data and perspectives
from developed regions [45, 55, 76]. This bias can also affect color-
concept associations. For instance, the color generated for “money”
is typically green, reflecting its association with the US dollar, and
“taxis” are generally portrayed as yellow. However, as artificial
concepts, these colors can vary across different countries. In our
approach, we address these variations by associating each concept
with multiple color palettes, allowing the model to capture a broader
range of color associations. In future work, thoroughly exploring
model biases from the perspective of color is essential. Another
limitation of the T2I model is its sensitivity to different prompts.
While we have made efforts to enhance the model’s responsiveness
by refining prompt structures and incorporating more detailed
context, as mentioned in Sect. 5.2, the model still doesn’t perform
perfectly across all concepts. Therefore, it is essential to recognize
that generative Al is a supportive tool that assists designers by
offering suggestions, rather than replacing their expertise.

Expanding and Comparing Generative Models. This work
focuses on T2l models for generating images to extract color-concept
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associations, which are preferred by designers as they provide di-
rect references for color selection and align with design workflows.
Additionally, large language models also show the capability to
generate color-concept associations based on text descriptions. Pre-
vious research has demonstrated that color-concept associations
derived from language models generally correlate with human judg-
ments [41]. Exploring the differences between image-based and
language-based references is valuable. Future work should compare
these approaches to gain insights into their interpretability and
investigate the potential benefits of combining them.

Ethical Considerations of GenAlI Tools. While GenColor
aims to support designers in color exploration, we acknowledge
the broader ethical implications of GenAlI tools. One concern is
GenAl tools may lead to the homogenization of creative output,
producing works that conform to mainstream designers and dimin-
ishing diversity [15, 49, 62]. Marginalized designers, whose works
often reflect unique personal and cultural elements, may be dispro-
portionately affected. Additionally, the automation of some tasks
traditionally performed by human designers could lead to job losses
and exacerbate inequality in the design industry, especially for those
marginalized ones [62]. The HCI community has recognized that
GenAl tools should serve as supportive rather than replacement
tools for human creativity [49]. They advocate for keeping design-
ers in the loop, enabling them to leverage GenAI tools to enhance
efficiency in routine tasks and thus devote more time and energy
to creative and expressive aspects of their work [22, 66]. Aligning
with these principles, GenColor is positioned as an assistive tool
that empowers designers rather than replacing their creative role.
Future work should focus on fostering diversity, ensuring trans-
parency, and establishing ethical guidelines to promote responsible
and inclusive use of GenAl in design practices.

7 Conclusion

In this study, we introduced GenColor, a generative framework de-
signed to improve the association of colors with concepts in visual
design. By leveraging T2I models, GenColor overcomes the limita-
tions of traditional retrieval-based methods, offering flexibility in
generating context-dependent images and robustness in managing
variations. Our evaluation shows that GenColor aligns closely with
designer preferences and outperforms existing approaches. We also
provide a publicly available gallery of color-concept associations
to support research and practical applications in design. Overall,
GenColor enhances designers’ ability to make informed and con-
textually relevant color choices, facilitating more effective visual
communication.
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A Sensitivity of the Diffusion Model

In our study, we observed that the T2I model exhibits varying
sensitivity to different types of prompts. Specifically, the model is
more responsive to prompts with visual descriptions compared to
abstract or non-visual concepts. To address this, we enhanced the
prompts by incorporating related visual descriptions, which helped
the model better capture the intended context. Instead of only use
“quiet”, we added “evoking feelings of silence and lonely” to provide
a more concrete visual description.

Figure 16 demonstrates this effect. The top row, prompted with
"quiet forest," includes images that, despite the prompt, exhibit
open and sunlit scenes (highlighted in red), which contradict the
expected mood. The second row, with the enhanced prompt, shows
a more consistent adherence to the quiet and solitary atmosphere.
Similarly, the bottom two rows compare "lively forest” with its
enhanced version; the latter produces images with a more vibrant
and hopeful tone, as intended, with the red boxes indicating images
that still convey a sense of depth and solitude rather than liveliness.
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Figure 16: Sensitivity of the T2I model to different types of prompts, comparing the original prompts with enhanced prompts.
The red boxes highlight images that do not align with the intended concept.
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